A) \frac{2}{3} x^{3/2} + C
B) \frac{1}{2} x^{2} + C
C) \frac{2}{3} x^{2} + C
D) \frac{1}{2} x^{3/2} + C
1. What is the integral of \int 4x \, dx ?
A) 2x^2 + C
B) 4x^2 + C
C) 2x^2 + 4x + C
D) x^2 + C
4. What is the integral of \int \sqrt{x} \, dx ?
A) \frac{2}{3} x^{3/2} + C
B) \frac{1}{2} x^{2} + C
C) \frac{2}{3} x^{2} + C
D) \frac{1}{2} x^{3/2} + C
1. What is the integral of \int 4x \, dx ?
A) 2x^2 + C
B) 4x^2 + C
C) 2x^2 + 4x + C
D) x^2 + C
4. What is the integral of \int \sqrt{x} \, dx ?
A) \frac{2}{3} x^{3/2} + C
B) \frac{1}{2} x^{2} + C
C) \frac{2}{3} x^{2} + C
D) \frac{1}{2} x^{3/2} + C
1. What is the integral of \int 4x \, dx ?
A) 2x^2 + C
B) 4x^2 + C
C) 2x^2 + 4x + C
D) x^2 + C
4. What is the integral of \int \sqrt{x} \, dx ?
A) \frac{2}{3} x^{3/2} + C
B) \frac{1}{2} x^{2} + C
C) \frac{2}{3} x^{2} + C
D) \frac{1}{2} x^{3/2} + C
1. What is the integral of \int 4x \, dx ?
A) 2x^2 + C
B) 4x^2 + C
C) 2x^2 + 4x + C
D) x^2 + C
4. What is the integral of \int \sqrt{x} \, dx ?
A) \frac{2}{3} x^{3/2} + C
B) \frac{1}{2} x^{2} + C
C) \frac{2}{3} x^{2} + C
D) \frac{1}{2} x^{3/2} + C
7. In the integration by parts formula, \int u \, dv = :
a) uv - \int v \, du
b) uv + \int v \, du
c) vu - \int u \, dv
d) uv - v \, du
8. The integral \int \cos^2(x) \, dx can be solved using:
c) Trigonometric identities
a) Substitution method
b) Partial fractions
d) Integration by parts
9. What is the integral of \int \frac{1}{x^2 + a^2} \, dx ?
a) \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C
b) \frac{1}{a} \sin^{-1}\left(\frac{x}{a}\right) + C
c) \frac{1}{a} \ln\left(x + a\right) + C
d) \frac{1}{a} \cos^{-1}\left(\frac{x}{a}\right) + C
10. The integral \int e^{2x} \, dx is:
a) \frac{1}{2} e^{2x} + C
b) 2e^{2x} + C
c) \frac{1}{e^{2x}} + C
d) e^{2x} + C
### Definite Integrals
11. The definite integral \int_0^1 x^2 \, dx equals:
a) \frac{1}{3}
b) \frac{1}{2}
c) 1
d) 0
12. If \int_a^b f(x) \, dx = F(b) - F(a) , then F(x) is:
c) The antiderivative of f(x)
a) The derivative of f(x)
b) A constant
d) The inverse of f(x)
13. The definite integral \int_{-\pi}^\pi \sin(x) \, dx is:
a) 0
b) 2
c) -2
d) \pi
14. The area under the curve y = x^2 from x = 0 to x = 2 is given by:
a) \int_0^2 x^2 \, dx
b) \int_0^2 2x \, dx
c) \int_0^2 x^3 \, dx
d) \int_0^2 x^4 \, dx