4. What is the integral of \( \int \sqrt{x} \, dx \)?
15. What is the integral of \( \int \sqrt{x} \, dx \)?
A) \( \frac{2}{3} x^{3/2} + C \)
B) \( \frac{1}{2} x^{2} + C \)
C) \( \frac{2}{3} x^{2} + C \)
D) \( \frac{1}{2} x^{3/2} + C \)
1. What is the integral of \( \int 4x \, dx \)?
A) \( 2x^2 + C \)
B) \( 4x^2 + C \)
C) \( 2x^2 + 4x + C \)
D) \( x^2 + C \)
4. What is the integral of \( \int \sqrt{x} \, dx \)?
A) \( \frac{2}{3} x^{3/2} + C \)
B) \( \frac{1}{2} x^{2} + C \)
C) \( \frac{2}{3} x^{2} + C \)
D) \( \frac{1}{2} x^{3/2} + C \)
1. What is the integral of \( \int 4x \, dx \)?
A) \( 2x^2 + C \)
B) \( 4x^2 + C \)
C) \( 2x^2 + 4x + C \)
D) \( x^2 + C \)
4. What is the integral of \( \int \sqrt{x} \, dx \)?
A) \( \frac{2}{3} x^{3/2} + C \)
B) \( \frac{1}{2} x^{2} + C \)
C) \( \frac{2}{3} x^{2} + C \)
D) \( \frac{1}{2} x^{3/2} + C \)
1. What is the integral of \( \int 4x \, dx \)?
A) \( 2x^2 + C \)
B) \( 4x^2 + C \)
C) \( 2x^2 + 4x + C \)
D) \( x^2 + C \)
4. What is the integral of \( \int \sqrt{x} \, dx \)?
A) \( \frac{2}{3} x^{3/2} + C \)
B) \( \frac{1}{2} x^{2} + C \)
C) \( \frac{2}{3} x^{2} + C \)
D) \( \frac{1}{2} x^{3/2} + C \)
1. What is the integral of \( \int 4x \, dx \)?
A) \( 2x^2 + C \)
B) \( 4x^2 + C \)
C) \( 2x^2 + 4x + C \)
D) \( x^2 + C \)
4. What is the integral of \( \int \sqrt{x} \, dx \)?
A) \( \frac{2}{3} x^{3/2} + C \)
B) \( \frac{1}{2} x^{2} + C \)
C) \( \frac{2}{3} x^{2} + C \)
D) \( \frac{1}{2} x^{3/2} + C \)
7. In the integration by parts formula, \( \int u \, dv = \):
a) \( uv - \int v \, du \)
b) \( uv + \int v \, du \)
c) \( vu - \int u \, dv \)
d) \( uv - v \, du \)
8. The integral \( \int \cos^2(x) \, dx \) can be solved using:
c) Trigonometric identities
a) Substitution method
b) Partial fractions
d) Integration by parts
9. What is the integral of \( \int \frac{1}{x^2 + a^2} \, dx \)?
a) \( \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \)
b) \( \frac{1}{a} \sin^{-1}\left(\frac{x}{a}\right) + C \)
c) \( \frac{1}{a} \ln\left(x + a\right) + C \)
d) \( \frac{1}{a} \cos^{-1}\left(\frac{x}{a}\right) + C \)
10. The integral \( \int e^{2x} \, dx \) is:
a) \( \frac{1}{2} e^{2x} + C \)
b) \( 2e^{2x} + C \)
c) \( \frac{1}{e^{2x}} + C \)
d) \( e^{2x} + C \)
### Definite Integrals
11. The definite integral \( \int_0^1 x^2 \, dx \) equals:
a) \( \frac{1}{3} \)
b) \( \frac{1}{2} \)
c) \( 1 \)
d) \( 0 \)
12. If \( \int_a^b f(x) \, dx = F(b) - F(a) \), then \( F(x) \) is:
c) The antiderivative of \( f(x) \)
a) The derivative of \( f(x) \)
b) A constant
d) The inverse of \( f(x) \)
13. The definite integral \( \int_{-\pi}^\pi \sin(x) \, dx \) is:
a) \( 0 \)
b) \( 2 \)
c) \( -2 \)
d) \( \pi \)
14. The area under the curve \( y = x^2 \) from \( x = 0 \) to \( x = 2 \) is given by:
a) \( \int_0^2 x^2 \, dx \)
b) \( \int_0^2 2x \, dx \)
c) \( \int_0^2 x^3 \, dx \)
d) \( \int_0^2 x^4 \, dx \)