10. The integral \( \int e^{2x} \, dx \) is:
11. The definite integral \( \int_0^1 x^2 \, dx \) equals:
12. If \( \int_a^b f(x) \, dx = F(b) - F(a) \), then \( F(x) \) is:
13. The definite integral \( \int_{-\pi}^{\pi} \sin(x) \, dx \) is:
14. The area under the curve \( y = x^2 \) from \( x = 0 \) to \( x = 2 \) is given by:
15. The value of the definite integral \( \int_0^a f(x) \, dx + \int_a^b f(x) \, dx \) equals:
16. The integral \( \int \sqrt{1 - x^2} \, dx \) represents the area of:
17. The integral \( \int_0^\pi \sin^2(x) \, dx \) represents:
18. To find the volume of a solid of revolution generated by rotating \( y = f(x) \) about the x-axis, we use:
19. The centroid of a region bounded by \( y = f(x) \) and the x-axis can be found using:
20. The integral \( \int \frac{dx}{\sqrt{a^2 - x^2}} \) is:
21. The integral \( \int \frac{1}{\sqrt{x^2 + a^2}} \, dx \) is:
22. The integral \( \int e^{x} \, dx \) is:
23. The integral of \( \int \frac{dx}{x \ln(x)} \) is:
24. The integral \( \int x \cos(x) \, dx \) can be solved using:
25. The area between two curves \( y = f(x) \) and \( y = g(x) \) from \( x = a \) to \( x = b \) is:
26. To find the volume of a solid obtained by rotating a region around the y-axis, the formula used is:
27. The integral \( \int \frac{1}{x^2 - a^2} \, dx \) is:
28. The integral \( \int \frac{dx}{x^2 + 2x + 2} \) can be simplified using:
29. The integral \( \int \ln(x) \, dx \) is:
30. To find the area of a region bounded by \( y = x^2 \) and \( y = x + 2 \), we first: