$$
\begin{aligned}
& \text { (c) } \lim _{x \rightarrow 2} \frac{4-x^2}{3-\sqrt{x^2+5}} \\
& =\lim _{x \rightarrow 2} \frac{\left(4-x^2\right)\left(3+\sqrt{x^2+5}\right)}{\left(3-\sqrt{x^2+5}\right)\left(3+\sqrt{x^2+5}\right)} \\
& =\lim _{x \rightarrow 2} \frac{\left(4-x^2\right)\left(3+\sqrt{x^2+5}\right)}{3^2-\left(x^2+5\right)} \\
& =\lim _{x \rightarrow 2} \frac{\left(4-x^2\right)\left(3+\sqrt{x^2+5}\right)}{9-x^2-5} \\
& =\lim _{x \rightarrow 2} \frac{\left(4-x^2\right)\left(3+\sqrt{x^2+5}\right)}{4-x^2} \\
& =\lim _{x \rightarrow 2}\left(3+\sqrt{x^2+5}\right)=3+\sqrt{2^2+5} \\
& =3+3=6 \text { (Ans.) }
\end{aligned}
$$